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Abstract 

We show that the configuration space of an inviscid incompressible liquid bridge connecting two 
parallel plates has the structure ofa Hilbert manifold. To construct this manifold structure we follow 
the general strategy of Ebin and Marsden [Groups of diffeomorphisms and the motion of an incom- 
pressible fluid, Ann. Math. 92 (1970) 102-163], where a manifold structure has been introduced 
for an inviscid incompressible fluid which completely fills a domain with smooth boundary. 

The fact that the liquid bridge has a non-smooth boundary requires extra considerations. In 
particular, we show how the use of Hodge theory as in the above mentioned reference can be 
avoided in the case of liquid bridges. © 1999 Elsevier Science B.V. All rights reserved. 

Subj. Class.: Classical field theory 
1991 MSC: 58D; 58F; 76A; 76C 
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1. Introduction 

In this paper we continue the study of  ideal liquid drops trapped between parallel plates 

begun in [6,8,9]. As in our previous work we stress the role the Hamiltonian structure of  

the drop equations plays in the analysis of  its motion. This structure has been used in the 

papers cited above to derive stability results for rigidly rotating fluid drops by applying 
a variant of  the energy-momentum method, which was introduced by Lewis, Marsden, 

Simo and their collaborateurs to analyse the stability of  relative equilibria in Hamiltonian 

systems with symmetry (compare the articles [11,13] and the book by Marsden [12].) The 

instantaneous position of  the liquid drop is described by elements of the configuration 
space of  the system. These are maps of  a fixed reference configuration into E3 encoding 
the instantaneous position of each fluid element of  the reference configuration. 

A main subject of  this paper will be to closely analyse the structure of  the configuration 
space for the liquid drop between two plates with fixed contact lines. The importance of 
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configuration spaces stems from the fact that they are usually the objects introduced first in 

the construction of  a Hamiltonian structure for the physical system under investigation. A 

main objective of  this paper is to show that it is possible to define a Hilbert manifold structure 

on the set of  drop configurations. Such a manifold structure has been introduced by Ebin and 

Marsden [2] on the space of  configurations of  an ideal liquid which completely fills a vessel 

with smooth boundary. In that case the fluid has no free boundary and the configuration 

space has the structure of  an infinite-dimensional group which carries a Riemannian metric. 

Ebin and Marsden use the differentiable structure to prove a short time existence result for 

three-dimensional ideal fluid flow without free boundary. This flow is along geodesics of  

the Riemannian structure on the configuration manifold. 

Configuration manifolds for ideal fluids with free boundaries have been introduced at a 

formal level in [10] for the case of a free liquid drop and in [6] for liquid drops trapped 

between plates. The question if it is possible to introduce a Hilbert manifold structure as 

in the case of  a fluid without any free boundary has not been pursued in these papers. We 

will show that it can be answered in the positive for the drop model with fixed contact 

lines by using the techniques introduced by Ebin and Marsden. However, some non-trivial 

modifications have to be made: In particular, Ebin and Marsden make use of the Hodge 

decomposition theorem for forms on manifolds with smooth boundaries. In our case the drop 

boundary is not smooth, because it has corners at the intersection points of  the free surface 

with the two plates. As it turns out in our case the application of the Hodge decomposition 

theorem can be circumvented by making use of  the fact that parts of  the drop boundary are 

free. An interesting problem that still seems to be open and which already has been alluded 

to in the original work of  Ebin and Marsden is to generalize their results to fluids without 

free boundary which completely fill a vessel with corners. 

Different from the model considered in [6] we assume the contact lines in which the free 

surface of the drop meets the plates to be fixed throughout the motion. By this we mean 

that the curves are mapped onto themselves under the drop motion. We do not ask them to 

stay pointwise fixed. Furthermore, we assume that the plates are completely wetted by the 

drop, i.e. the contact lines are along the rims of  the plates. This model has been proposed 

in the case of  axisymmetric potential flow of an ideal fluid by Eidel [3]. We present some 

more details of  Eidel's model below. Note that we assume in particular that the drop never 

loses contact with the two plates. A drop trapped between two plates is also called a liquid 

bridge. 

Whereas the contact lines are assumed to be fixed throughout the motion, the angles in 

which the free surface meets the plates are allowed to vary. In contrast to this we assumed 

in our previous work that the contact lines are free to move along infinitely extended plates 

and that the contact angles stay put throughout the motion and equal to the angles in which 
the free surface meets the plates in a static equilibrium configuration of the drop (see [4] 

for the mathematical theory of  liquid masses with free boundary at rest). 

The methods of  this paper can be modified to define a manifold structure on the configu- 
ration space of  a liquid bridge with moving contact lines in case the contact angles at the two 

plates are different from zero. This is explained in more detail at the end of  Section 3 alter 

we have introduced the manifold structure on the configuration space of  a drop with fixed 
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contact lines. There is an important difference between these two liquid bridge models: As 
explained above, the drop with moving contact lines is assumed to be trapped between two 
infinitely extended plates. Therefore the possibility arises that the free surface of the drop 

might hit one of the plates when the drop is moving. One has to exclude these configurations 

if one wants to have the structure of a smooth manifold without boundary, on the configura- 

tion space of a drop with moving contact lines. Note that this situation can not arise in the 

model of the drop with fixed contact lines between plates considered in this paper because 

the contact lines are assumed to be along the rims of the finitely extended plates. 
The paper is organized as follows. In Section 2 we describe the geometry of our drop 

model and its dynamics under the influence of surface tension forces. As mentioned above, 

the equations of motion for the drop are a generalization of those given by Eidel [3] for 

axisymmetric irrotational motion of an inviscid drop between two plates. We show that the 

equations of motion can be written in Hamiltonian form by introducing a configuration 
manifold, a phase space and a Poisson bracket, which is defined for a certain class of 

admissible real-valued functions on phase space. In particular the total energy of our system 
which is the sum of the kinetic energy and a surface energy, is an admissible function. This 

function is the Hamiltonian for the drop motion. The discussion in Section 2 in on a formal 

level, i.e. the differentiability properties of the objects introduced are not specified. 

The differentiable structure of the Lagrangian configuration space is the topic of Section 3, 

which is the main section of this paper. To construct the manifold structure we make use of 
the strategy in [2]. As mentioned above, special care has to be taken of the intersection points 

of the free drop surface with the two plates. For transparency we treat the two-dimensional 
case only and briefly point out which modifications have to be made to treat the three- 

dimensional case when this is not entirely obvious. At the end of this section we sketch 

how a manifold structure can be defined on the configuration space of a drop with moving 
contact lines. In Section 4 we summarize results of the companion paper [7]. There, a variant 

of the energy-momentum method designed to analyse the stability of relative equilibrium 
solutions is used to study stability and bifurcation behaviour of rigidly rotating cylindrical 

drops. These are solutions to the equations of motion for arbitrary values of the angular 
velocity. The analysis is very much in the spirit of the one given in [9], where trapped ideal 

fluid drops with movable contact lines have been studied. 

2. The equations of motion and their Hamiltonian structure 

Let x, y and z denote cartesian coordinates in ~3 and let d, h 6 R +. We assume that the 
two plates bounding the liquid drop are given by 

P o = { ( x , y , z ) l x 2  + y 2 < d , z = h } ,  

and 

P1 : {(x, y, z)[x 2 --I- y2 5 d, z : 0}. 
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Cl ~1 

Fig. 1. The drop profile. 

Let ci denote the boundary curve of the disk Pi, i = 0, 1. As a reference configuration for 
the drop we choose the closure/~ of the cylinder 

E = { ( x , y , z )  • ~31x2-q-3 ,2 < d  2 ` 0 < z  < h}. 

Let 

FE = {(x, y, z) • ~3 x 2 + x 2 = d e , O < z < h}. 

denote the lateral boundary of/~. Let V denote the vector space of differentiable real-valued 

functions on FE and define U ___ V by 

U = { g •  V I d + g ( p )  > 0 f o r p •  F E a n d g ( p ) = 0 f o r p • c 0 U c l } .  

Let 

1 
r(x,  y, Z) -- (x, y, 0), (I) 

f o r ( x , y , z )  E ~ 3 , x  2 + y 2 5 ~ 0 . F o r g C U a n d p E  FElet  

~,(p) = p + g (p ) r (p ) .  

A drop configuration is specified by the position of the free boundary I2 of the drop (see 

Fig. 1). I7 is a two-dimensional manifold which connects the two plates, Let Si denote the 

contact-surface of the drop and plate P/, i = 0, 1. We assume that 

and 

So : {(x, y, z)l x2 -+- y2 < d, z = h] = Po, 

SI ---- {(x, y, z)lx 2 + y 2  < d , z = 0 } =  PI. 

(The plates are completely covered by the drop.). Let D r  denote the region enclosed by 
z~, ,~1 and $2, i.e. the region occupied by the drop. In this section we assume that the free 
drop-boundary S is the graph of a real-valued function on the free boundary FE of the 
reference configuration/~. More precisely, the Eulerian configuration space for the drop 

motion is 
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M = {27 I 27 = I m ~  for some g ~ U and 

D s  = 0(/~) for some 0 E Embv*ol(/~, R3)}, 

where Emb*ol (/~, •3) is the set of  volume-preserving embeddings of  the reference cylinder 

/~, which fix the top and the base of /~.  In particular, the contact lines co and cl stay fixed 
setwise. As mentioned in Section 1, the discussion in the section is on a formal level. 

Differentiability properties of  elements of  Embvol(E, R 3) will be discussed in the next 

section. 

Embv*ol(/~, R 3) is the Lagrangian configuration space C for the drop with fixed contact 
lines. Let G denote the group of volume-preserving diffeomorphims of the reference con- 

figuration/~ which keep co and cl fixed. Let C' denote the set of  those 0 6 C having the 

property that the free boundary of 0(/~) can be written as g(FE) for some g 6 U. Then it 
is easy to check that 

M ~- C'l~, 

in the sense that there exits a natural bijective mapping between .M and C'/~. Elements of  

the tangent bundle TC are pairs (0, #) ,  where 0 6 C and # ( p )  = (d /dZ)Iz=0cx (p),  cz E 

C, co = 0. Then 

div(/z o 0 - l )  = 0  

(# o 0-1,  (0,0,  1)T) = 0  onZ i , i=O,  1, 

( / £ O 0  -1  , ni)=O onci , i=O,  1. 

Here ni : ci --+ ~3 denotes the vector field of  outer unit normal vectors to the curve ci in 
plate Pi, i ---- 0, 1. Let n : 27 ~ = ~3 denote the vector field of  outer unit normal vectors to 

the free boundary 27 of  the drop. The tangent space T~AA to an element 27 of the Eulerian 
configuration space AA can be identified with the set 

V s = { f ' 2 7 ~ l f f ( n , r ) d a = O ,  f = O o n c o U c l } . z  

The phase space in the Lagrangian description of our problem is the tangent bundle TC of 
the Lagrangian configuration space C. Phase space in the Eulerian description is the space 

AF = {(27, v) [ 27 ~ M ,  v : D z  --+ ~3, div v = 0, (V, (0, 0, 1) T) = 0 on 

270U271, and(v ,  n i ) = 0 o n c i , i = 0 , 1 } .  

Then 

TC' I~ ~ JV 

Now we describe the Poisson structure in A/'. As in [6], this structure can be derived by a 
Marsden-Weinstein reduction from a Poisson structure on the Lagrangian phase space TC. 

First we describe the class of  admissible functions 79, i.e. the set of  real-valued functions 
on phase space, for which the Poisson bracket will be defined. 
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We say a function F • A/" ~ ~ has a functional derivative with respect to Z' in ( Z ,  v) 
A/', if 

f SF DF(Z,  v)Sr  = ~-~(~, v)8Z dA, 

z 

for some function (SF/SZ,)(Z, v) • r ~ ~. We say a function F : A/" ~ ~ has a 

functional derivative with respect to v in (~7, v) 6 A/', if 

ISF Z v),Sv) D F ( Z , v ) S v =  f , dV, 

Dr 

for a vector field (SF/Sv)(E, v) : D z  -+  •3, satisfying 

div ( E , v )  = 0  and (E ,  v), (0, 0 ,1 )  T = 0  on~70UZ'1 .  

Let r : ~3\{(x ,  y, z)[x 2 + y2 = 0} -+  ~3 be defined as in (1). As explained above, 

n : Z ~ ~3 is the vector field of  outer unit normal vectors to Z .  The Poisson bracket 

{F, H} : .M --~ ~ of  two functions F,  H 6 7) is defined by 

{F, H}(Z, v) = V x v, 8v x dV 

Dr 

+ 8-~ \~v  n - - ~ \ 3 v  1] (r,n~ dA" 
z 

One can check that the sum of  the kinetic energy of  the drop and the potential energy due 
to surface tension 

'f f H =  ~ ] Jv ] ]2dV+v  dA,  

Ds r 

is an element of  7). Here r > 0 is the constant of surface tension. The density of the drop 

is assumed to be p ----- 1. One has 

8H 1 
8Z 2[Ivll2(r,n) + rx(r,n) and 8H 

- -  ~V - -  V, 

where x denotes the mean curvature of  the surface r .  Now we are going to derive the set 

of partial differential equations, which are satisfied by solution curves 

R _  I ~ A / ' ,  

t ~ (St, vt), 

of the Hamiltonian equations 

/ ~ = { F , H }  for a l l F c T ) .  (2) 
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Eq. (2) is just a shorthand for 

d 
dtF(~7,, v,) = {F, H}(~Tt, v,) for all F 6 D. 

By the divergence theorem one has 

{ F , H } = -  (~--~Fv,(Vxv) xv dV+ 6Z(r,n~dA 
Dr Z 

_ f  1 9[3F,n) dA_r  fx[~F n) dA 21lvll- \~-v J \ ~ v '  
z z 

\~v-v v x ( V x v ) - V 2  Ilvl12 d V +  8,U(r,n) 
Dr 

--r f tcl3F,n) dA. J \av 
z 

Making use of the fact that 

v x (V x v ) -  ½Vllvll 2 = - ( v - V ) v ,  

m d A  

(3) 

one arrives at 

f (,F ) f ,F ,~: (r, n) {F, H} = -- ~-~, v . Vv dV + 
Dr S 

--r Jf xlgF,n)\ ~v dA. 
Z 

Define 

p " {(x, t) ~ ~4lx E D~:,, t ~ I} --+ ~, 

(x, t) w-~ p(x, t), 

dA 

to be the solution, keeping t fixed, of the boundary value problem 

Ap = -div((v  • V)v) 
p = T K  

( V p ,  (0, 0 , 1 )  T) = - - ( (v  . V)v ,  (0, 0, 1) T) 

i n  Dz,  
on .~', 

on Xo U Z'~. 
(4) 

Then, 

,dA=-fp\a v /dA=-f(Vp, )dV, 
S ~ Ds 

and 

f (3F__ ) f ~F (r, n) {F, H} = - ~ ,  - - V p -  (v. V)v dV + 

Dr Z 

m d A .  



H.-[{ Kruse./Journal o f  Geomett 7 attd Physicx 29 (1#99 260-282 

Thus, the equation b = IF, H } is equivalent to 

D.V Z 

5F (v, n} 
dA. 

5 Z  (,. n) 

267 

(5) 

on Z'o tO Z1. 

onci, i = O , l .  

Here p is the solution of the boundary value problem (4). It is easy to see that the convev,c 
holds true, i.e. that a solution to (9)-(14) yields a solution to Hamilton's equation i2}. 

l) ~ TK 

divv = 0 ,  

(v, (0,0,  1) T) = 0  

(v. hi) = 0 

D~ X 

If F E 7) is of the form F = fDr f dV for some function ,f : 23 -+ ~, then 

31: ~F 
-f(r ,n)  and - - = 0 .  

(~Z av 

Because one can choose f : ~~ --+ ~ arbitrarily, one concludes from Eqs. (2) and (5) that 

E - (v, n) 16) 
(r, , )  ' 

and that 

f ( ~ v ' i " + ( v ' V ) v + V p ) d V  = 0  f o r a l l F E ~ .  (7, 

l),~ 

For fixed t, put u = ~5 + v - Vv + Vp. One has 

d i v ( u ) = 0  and ( u , ( 0 , 0 . 1 )  T ) = 0  o n r , ~ U r l .  

using the definition of  p and the fact, that v is divergence free. Define a function/-',, : ,\." - ~ ~ 

by 

F , (~ ' .  t') = f (u, t,} dV. 

/)y_ 

Then/~), E 'D a n d  (aF,,/av) = u .  Using this in (7) one arrives at 

t) + (t,. V)v . . . .  Vp. ~8) 

In summary, we have shown that a curve t ~-+ (Z~, v,) in .\," satisfying (2) is a solution 1o 

the following system of partial differential equations: 

~, + ~v. V)v = - V p ,  

E - (v..) 
(r, n )  ' 

o n  27, 

(q! 

10~ 

( I l l  

~121 

(13) 

(14) 
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To relate our equations to those given in [3], we specialize Equations (9)-(14) to the case 

of potential flows with rotationally symmetric potential, i.e. we assume the velocity field v 
to be of the form 

v = V ~  

for a real-valued function q0 which only depends on the R and Z components of cylindri- 

cal coordinates R, qb and Z. We assume the free boundary of the drop to be rotationally 
symmetric and to be defined by the equation 

R = d + ( (Z) ,  (15) 

i.e. the free boundary is the level set qJ (R, Z) = 0 of the function qJ (R, Z) = R - ~ (Z) - d. 

One has 

3lP 1 3q/ 3qJ 3( 
V~t = ff-~eR + - ~ - ~ e q 5  + - ~ e z  = eR - -  ~-~ez,  

where eR, e~ and ez  are unit normal vectors in the R, ¢ ,  and Z direction, respectively 
(compare [5]). Thus, an outer unit normal vector field to the free boundary E of the drop is 
given by 

n = v/1 + ( O g / O Z )  2 e R  - -  ez  • 

Because by definition (1)r = eR, 

1 
(r, n) = 

~/1 + (a~-/az):' 
and 

(v, n) = (Vq~, n) 

= eR -- ez  ~-~eR + f f -~ez,  ~/1 + (3~ /3Z )  2 

_ 1 aca ) 
- ~ / l + ( a f / a z )  2 - ~  a z ~  " 

Thus, Eq. (10) can be written in the form 

0 4  O~ 0q~ 4-  
3R 3Z  3Z  

Using (3) in Eq. (9) yields V ¢  + ½VllV~ II 2 = - V p .  Thus, 

¢ + ½ IlVq, ll 2 + p = c, (16) 

for some c 6 ~, i.e. because of the symmetry of q~, 

¢ + 2 \ \ ~ , /  + \ O Z ]  } + p = c .  (17) 



H.-P Kruse /Journal of Geometry and Physics 29 (1999) 260-282 269 

Using (11) in evaluating (17) on the free boundary X of the drop yields 

1 ( ( 0 4 ' ' ]  2 (04''12 ~ + r x  =c .  (18) 
= \ \ o R j  + \ o z /  } 

Because the elements of  our configuration space have fixed contact lines co and cl, one has 

~" = 0 for Z = 0 and Z = h, and from (13) it follows that (04"/0Z) = 0 at Z = 0 and 
Z = h. Eq. (12) can be written in the form A4" = 0. 

In summary, we see that in case v = V4" for a rotationally symmetric potential 4" 

Eqs. (9)-(14) can be written in the form 

A4" = 0 ,  (19) 

04'  O~ 04" _ 0, (20) 
- + 0z oz 

+ r K = c  a t R = d + ~ ( Z ) ,  (21) 

O4" 
- - = 0  a t Z = 0 ,  h, (22) 
OZ 

= 0  a t Z = 0 ,  h. (23) 

1 ( ( 0 4 " ~  2 ( 0 4 " ~ 2 ~  

+ \ \  0 R /  + \ 5 - g j  } 

If c = r/d holds, Eqs. (19)-(23) are just the equations of  motion in [3] for the special case 

that the density of  the drop is given by p = 1. Eidel asks the drop volume to be equal to that 

of the reference cylinder with radius d and height h. In particular, a cylinder at rest with 

base radius d is a solution to Eidel's equations of  motion. 

3. The manifold structure of the configuration space 

For transparency we consider the two-dimensional case, i.e. the configuration space of  

a plane drop. We will point out which modifications have to be made to handle the three- 

dimensional case when it seems to be necessary. 

To simplify notation, we assume the height of  the drop to be h = 2 and the base radius 

to be d = 1. We choose coordinates x, y E ~2 such that the reference configuration (see 

Fig. 2) of  the drop is the closure/~ of  the set 

E = ( - 1 ,  1) × ( - 1 ,  1). 

For a subset B # t3 of ~2, let C t (B, ~2) denote the space of  C l -maps of B into R 2 which 

can be extended to C I -maps on a neighbourhood of/~. 
Note, that by this definition, it makes sense to evaluate ~ ~ C t (E, ~2) on the boundary 

of E. 
We will now outline our strategy to put a manifold structure on the configuration space C 

introduced in the preceding section. Let Emb*(/~) denote the set of  embeddings of /~ into 
~2, which map 2~0 and r t  onto themselves and which fix the four comer points of/~. The 

degree of differentiability of the maps in Emb*(/~) will be specified later. We will show that 



270 14.-P Kruse /Journal of Geometry and Physics 29 (1999) 260-282 

(-1,1) 

E 

~(0,0) 

(1,1) 

X 

(-I,-I) fl,-1) 

Fig. 2. The reference configuration. 

Emb* (/~) is a submanifold of  a Hilbert space of  mappings. Let A2(/~) denote the vector 

space of volume elements on/~.  (Again, the exact differentiability properties of  elements 

of  A2(/~) will be specified later). These volume elements are of the form f dx/x y, where 

f is some real-valued function on/~. We will show that the map 

q/ : Emb*(/~) --~ W, 

rl ~ o*dx  A dy,  

is differentiable. Here W is a certain subspace of A 2 (/~) to be defined later. Then we will 

prove that 

C = ko- I (dx A dy) 

is a submanifold of  Emb*(/~) by showing that the map Toq~ is surjective at every ~ 
~ - l ( d x  A dy). 

Now we will fill in the details in the program outlined above. To put a manifold structure 

on Emb* (/~), we will show that Emb* (/~) can be considered as a submanifold of  H ~ (E, ~2) 

for s > 2. H s (E, ~2) is a Hilbert space and therefore a trivial Hilbert manifold. One arrives 

at the same manifold structure on H s (E,  ~2) if one applies the well-known construction 

to introduce a manifold structure on a set of maps from a manifold M to a manifold N. Of 

course this construction is trivial in the situation at hand: For p 6 R 2 define the exponential 
map with respect to the standard metric on •2 

expp : ~2 ...+ ~2, 

xw-~ p + x .  

If  one has to deal with more general Riemannian manifolds N than R 2, the exponential 

map is defined only in a neighbourhood of 0 ~ TpN. Because ~2 is geodesically complete, 
the map eXpp is defined on all TpR 2 = R 2. Ebin and Marsden [2] are dealing with general 

Riemannian manifolds N and to ensure that N is geodesically complete they assume that 
it is compact. 
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Local coordinates parametrizing a neighbourhood of  0 E H ~ (E, ff~2) are given by 

H ' (E, ~2) ~ H s (E, R2), 
X ~ (q ~-~ o(q) + X(q)). (24) 

One has to check that the change of  coordinates is well-defined and smooth. This is obvious 

from (24): If O 6 HS(E, ~2) can be written in two different ways 0 = r/l + Xj and 0 = 

~2 + X2 for 0~, 02, XI, X2 c HS(E, R2), then changing coordinates means substituting 

X2 = 0J + XI - ~2 for Xl, which is a smooth map. 

As alread stated above, as a Hilbert space, H ~ (E, ~2) is a trivial Hilbert manifold, taking 

the identity map H s (E, ~2) ~ H s (E, R 2) as a local chart. The differentiable structure one 

arrives at using this chart is the same one gets by using the general construction outlined 
above. In particular, 

T,1H~(E, Re) = HS(E, ~2). 

Let Emb(/~) denote the set of  embeddings 71 : /~ ~ R 2, where by an embedding we mean 
an H s-map ( with an inverse ( - l ~ C I (((/~), E2). As explained above, C l (((/~), ~2) is the 

space of C 1 -maps from ((/~) to R 2, which can be extended to C I -maps on a neighbourhood 

of  the closure of  ((/~). Note, that by Sobolev's embedding theorem it makes sense to evaluate 

elements of  H ~ (E, ~2) on/~. Now we will show that Emb(/~) is a trivial submanifold of 
H'(E) .  

L e m m a  1. Emb(E) is an open subset of HS(E). 

Proof First we show that there is a neighbourhood of r/in H~(E), consisting of maps 

that map/~ locally diffeomorphic onto ((/~). 

Let V denote an open bounded neighbourhood of  E in ~2. By the theorem of Calderon- 

Zygmund there is a linear and continuous extension map HS(E) ~ Hs(R 2) (compare 

[ 14]). Composing with a restriction map yields a linear continuous extension map 

H.~(E) __~ Hs(v) .  

Since by Sobolev's embedding theorem the inclusion map H"(V, R 2) ~ C j (V, ~2) is 

continuous, we have a continuous map 

H~(E) _+ CI(v ,  ~2). (25) 

Therefore, it suffices to show that for each r/ E Emb(/~) there is a neighbourhood U _c 

C 1 (V, ~2) consisting of  maps that are local diffeomorphisms when restricted to/~. Let [I • II 
denote the standard norm on C I(V, R2). Define 

O" : V x C I ( v , ~  2) --~ [J~2 x CI (v , [~2) ,  
(x, X) T ~ (~(x) + X(x),  X) T. 

Then 
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is invertible for x e /~, IIXII < E and e e E+ sufficiently small. The inverse D a  - I  has the 
form 

D t r _ , = ( ( D x r l + ( D x X ) ) - '  - ( D x O + ( D x X ) ) - '  o ( * ) )  
0 Id " 

The inverse function theorem then guarantees the existence of  a neighbourhood Ba~ (x) × 

BEy (0) of (x, 0) in V x C l (V, Re), such that the restriction ofcr to this neighbourhood is a 

diffeomorphism onto its image. Since/~ is compact, we can cover it by a finite number of  

balls Baxi (xi ), i = 1 . . . . .  n, such that 

B~xi (X i) ._+ ~2, 

x ~ O ( x ) + X ( x ) ,  

is a local diffeomorphism for X e B<~ (0). In particular, 

~ _ _ +  ~ 2 ,  

x ~ ~(x) + X(x),  

is a local diffeomorphism for X e B~(0), where ~ = mini=l ..... n Ex~. Thus ~ + Bg(0) is the 
neighbourhood of  0 in C l (V, ~2) we were looking for, consisting of maps ( that map/~ 

locally diffeomorphic onto ((/~). 

The proof shows that we can cover E by small closed squares Sl . . . . .  & as in Fig. 3 in 

such a way that ( c 0 + B~ (0) is a diffeomorphim when restricted to any square consisting 
of four small squares. Define a function M : ~ + Bg (0) -+ R by 

m ( ( )  = min{l((x) - ((Y)I, x e Si, y e Sj for some Si, Sj with S i 1"-) SJ = ~- }" 

Because 0 is injective when restricted to E, one has M(~) > 0 and since the function M is 
continuous, one can find ¢ < ~, such that M ( ( )  > 0 for ~ e 0 + B~(0). In particular, the 
map ~ is injective: because M ( ( )  > 0, the images of non-neighbouring small squares do 

not intersect. But images of  neighbouring small squares do not intersect either, because ( is 
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injective on every square built from four neighbouring small squares. Therefore, ~ + B~ (0) 

consists of maps that are local diffeomorphims and injective, when restricted to E. Since 

the map (25) is continuous, it follows that Emb(/~) is an open subset and therefore a trivial 
submanifold of H~(E, ~2). Let Uo denote a neighbourhood of ~ in HS(E, R 2) that is 
mapped into ~ + B~(0) by the map (25). Local charts in a neighbourhood of O E Emb(E) 

are given by 

~,l : ~ + Uo ~ U~I, (26) 
~" ~ , - ¢ .  

This finishes the proof of the lemma. [] 

Let Emb*(/~) denote the set of those elements of Emb(/~) that map 27o and El onto 

themselves, keeping the four comer points of/~ fixed. 

Lemma 2. Emb*( E ) is a submanifold of Emb( E). 

Proof Define a subspace Xll _ HS(E, ~2) by 

Xll = {X E HS(E, fit 2) [ (X, (0, 1) T} = 0on E0 U 27j, 

and X = 0 in the cornmers of/~}. 

By our assumption that s > 2 and by Sobolev's embedding theorem, XII is well-defined. 

Obviously, XII is a closed subspace of H s (E, ~2). We now show that for each r/E Emb* (/~) 

~ - I  (U,1N Xll ) = Emb*(/~) N (~/+ U 0) (27) 

holds true. This will prove that Emb*(/~) is a submanifold of Emb(/~): 
If ~ E Emb*(/~) N ( r /+  U~), then E0 and 271 are mapped onto themselves by ( and the 

four corner points stay fixed. The same holds true for ~/, therefore 0 - ( is tangential to Z'o 

and r j  and vanishes in the corner points, i.e. r / -  ( E XII- 
If, on the other hand, X ~ U~ N XII, then 0 + X E Emb(/~) fixes the four corners, because 

t/does so and X vanishes in the corners. Because X is tangential to E0 and 271, ~/+ X maps 
27o and El onto segments of straight lines. Since r /+  X is an embedding which fixes the 

corners, it then follows, that 27o and 271 are mapped bijectively onto themselves. Therefore, 
7/+ X E Emb*(/~). This shows that Eq. (27) holds true and proves our claim that Emb* (/~) 

is a submanifold of Emb(/?). [] 

Furthermore, 

T,j Emb*(/~) = Xii (28) 

holds. This is easy to see: If X E T~ Emb*(/~), then by definition there is a one-parameter 

family ~t E Emb*(/~), r/0 = 7, such that 

d 
t=0 r/t = X 
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and X ~ XII obviously holds. If, one the other hand, X ~ XII, then 0t :=  0 + t X  is in 

Emb(/~) for t ~ ~ sufficiently small, because this set is open in HS(E,  R e) as we showed 

above. Since 0t fixes the plates and the corners of  E, one has Ot~ Emb* (/~) and furthermore 
( d~ dt)rh = X at t = 0. This proves (28). We will now show that a differentiable structure 

can be defined on the configuration space C of  the liquid drop between the two plates. 

Theorem 3. C is a submanifold o f  Emb*(E).  

Proof  Before giving the details of  the proof we will outline its strategy. For l c N let 
H 1 (A e) denote the vector space of  volume elements on E of  class H t . The space H 1 (A l) 

is defined analogously. The volume elements are of  the form f dx A y for some function 

f ~ HI (E ,  R). We will prove that 

: Emb*(/~) ~ W, 

~7 ~ o* dx A dy,  

is smooth, where W denotes a certain subspace of  H s-  1 (A  e) to be defined later. Then we 

will show that 

C = qJ - l (dx  A dy) 

is a submanifold of  Emb*(/~) by proving that the map ToqJ is surjective at every r/ E 

q j - I  (dx/x dy). Note that 

qJ (O) = (det Do)  dx A dy. 

Now we will fill in the details in this outline of  the proof. For I > 1H l (E, ~) is a ring under 

pointwise multiplication, the so-called Schauder ring. This result is stated in [2] for the case 

that E has a smooth boundary. Using the extention theorem of Calderon and Zygmund one 

sees that it also holds in the case of  a square-shaped E. Therefore, det DO ~ H s-1 (E, R) 

for 0 ~ HS(E,  R2). Obviously, kV is a smooth map. 

Note that 

0*(dx A dy) = I/* d(x dy) = d(0*(x dy)) (29) 

is an exact form. For 0 e Emb* (/~), the two-form 0* (dx/x dy) has some additional properties 

as we will show now. For 0 = (01, 02) T, one has 

r/*(x dy) = 01 d02 = 010x02 dx + 010y/12 d y .  (30) 

Because 0 keeps the contact surfaces 27o and 271 between drop and plates fixed, one has 

02 = 0 o n  ,~v' 0 U z~ 1 . Making use of  this in (30) one gets 

0*(x dy) = T]I Oy02 dy o n  270 U 271. (31) 

Let 

i~: 0 :27o--+  /~ and ix  1 : Z l  ~ /~ 
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Y 

E 

X 

J 

E* 
Fig. 4. Smoothing the boundary of E. 

denote the canonical embeddings. From (31) it follows that 

i s i07*(xdy) )  = 0 for i = 0, 1. (32) 

By definition, this means that the one-form r/*(x dy) is normal to Z0 and to S1. From (29) 
we see that 

0*(dx/x d y ) =  d/3, (33) 

for a one-form/3 of class H s-1. This one-form is not uniquely determined and we now 

show that we can find 13 E H s (A l) satisfying Eq. (33) and also 

i z i ( / 3 ) = 0  f o r i = 0 , 1 .  (34) 

From Eq. (30) one has 

r/*(dx A dy) = ( O x r } l O y r ] 2  - -  OyrllOxrl2)dx A dy. 

By the Calderon-Zygmund theorem there is a function f~ ~ H "~- l (~2, ~), such that 

fo = (OrOIOy02 - -  0y010x02) in E. 

Extend E to a domain E* with smooth boundary as shown in Fig. 4. By multiplying f,I 
with a smooth bump function that has support in E * \ E  we can construct a function f 
H s-I  (R 2, R) with f = fo in E and re, fdA = 0. Let ~ ~ H s+l (E, ~) he any solution of 

= f ,  
O~ _ 0 on 8 E * .  (35)  
On 

This Neumann problem is solvable by construction of f .  Let g 6 H s+l (E, ~) denote the 
restriction o f~  to E and define/~ 6 HS(A 1) by 

= -Oyg dx + Oxg dy. (36) 
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(We note, that in the three-dimensional case one has to define/~ by/3 = g: dx A dy + gx dy A 

dz - gy dx A dz. Then d/~ = Ag dx A dy A d z  holds, analogously to the two-dimensional 
case.) One has 

d E = Oyygdx A dy + Ox~.gdx A dy 

= 0*(dx A dy),  (37) 

and izi (/~) = 0 for i = 0, 1, i.e. Eqs. (33) and (34) are satisfied by/~ E H s (A 1 ). Note that 
these properties are conserved if we add to/~ the differential of  a function h ~ H s+l (•2, ~) 

with 

Oxh = O o n r 0 U , ~ l .  

We will now show, that such a function h 
property 

i.e. 

(38) 

HS+l (~2, ~) exists, having the additional 

and 

(Oxh]  
Oyh /l + (~02 ) = O, (40) 

at the four comer  points for E. Using the Calderon-Zygmund theorem, we extend/~ = 
(/~1,/~2) T to a function in H s (~2, R2) which we also call/3. Let 

hL(x, y) = (1 - y)½[(/32(1, 1) - f12(-1,  1))X 4- (/~2(1, l) q-f12(--1, 1))]. 

Then 

h l+Oxh j = 0  o n Z 0 ,  

Oy hI + f12 = 0 for (x, y) = (--1, 1), (1, 1). 

Define h 2 analogously such that 

h 2 = Oxh 2 = 0 on E l ,  

and 

0 y h 2 + / 3 2 = 0  for (x, y) = ( - 1 ,  - 1 ) ,  (1, - 1 ) .  

Now introduce a bump function B E C a ( R ,  ~),  satisfying 

B ( s ) = l  for s E (--¼, ¼) and B ( s ) = 0  for s ¢ ( - ½ ,  ½). 

Define 

h(x, y) = B(y - 1)hi(x,  y) + B(y + 1)h2(x, y). 

dh + / 3  = O, (39) 
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Then, Eq. (38) is satisfied, because h vanishes on Z'o U El .  Also, Eq. (40) holds by con- 
struction. Therefore, 

/¢ = f i +  dh 

satisfies 

dfl = r/*(dx A dy),  (41) 

f l e  H s (A l), (42) 

iz0 (fl) = 0, (43) 

iv  I (/3) = 0, (44) 

fl = 0 at the edges of  E. (45) 

Let 

W = { dfl,/3 satisfies (42)-(45)}. (46) 

(Note that by replacing the function f,~ by an arbitrary function f ~ H " - I ( N  2, ~) the 
argument above actually proves that W = H S - l ( A 2 ) . )  We have shown that 

O(Emb*(E) )  c_ W (47) 

and that we can consider q /a s  a map 

qs : Emb*(E)  ~ W, 

~ r/* dx/x  dy. (48) 

It is easy to see that qJ is differentiable. Now we want to show that 

W c_ T,7O(T ~ Emb*(/~)). (49) 

This will prove that T,qJ is surjective and that therefore 

C = ~ - l ( d x A  dy) 

is a submanifold of  Emb* (/~). 
By [2] one has 

T , t ~ X  = ~*(Lxo~-~ (dx A dy)),  (50) 

for a vector field X. We verify Eq. (50) by a direct computation. 
Because dx m dy is a closed form, 

Lx~,7 ~ dx A dy = dixo~l-t(dx A dy).  (51) 

holds. By definition of the contraction operator one has for two vector fields v and u, 

iu,(dx m dy)v  = dx A dy (w ,  v) = wlv2 - w2vl ,  
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and therefore 

i,(dx A dy) = -wz dx + wl dy, 

and 

diXor7-l (dx A dy) = d(-X2 o q-’ dx + xl o 17-l dy) 

= @,(x2 0 q-‘) + 3,(X’ 0 9-l)) dx A dy. 

Because 

wl7-91 
a&-‘)2 

one has 

a,(x 0 ~-1)~ = ay(x2 o ~-9 
= axx2aywlh + a,x2a,w1)2 
= &(~xx2~-~y~l) + ayx2axd, 

and 

a,(x o +), = a,(x, o v-1) 

= maxwlh + ayxlaxw1)2 

= &wlay~2 + ayxl (-h2)). 

Thefore, using Eqs. (51) and (52), 

L xoll-~ dx A dy 

and 

v*L,,,-1 dx A dy = (aXXlayq2 + a,x2aXrl 

-ayxlad2 - aXx2ayu dr A dy. 

(52) 

(53) 

But because, by definition of WY, 

p(v) = rl*(dx A dy) = <&wa,m - $maxrlddx A dy, 

Eq. (50) follows from Eq. (53). If, in particular, r] =id, the identify map, then by (50) and 

(51), 

c:,dwx = dix(dx A dy) = d(-X2 dx + X1 dy). (54) 
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To see that (49) holds at O =id,  take any w E W choose fl = fll dx + r2 dy, such that 

w = d r  and (42)-(45) are satisfied and define X E H S ( E ,  ~2), X = (Xi, X2), by 

(x,) 
xz -¢~1 " (55) 

Then, (X, (0, 1) T) = 0 on Zi ,  i = 0, 1, and because fl vanishes in the four corners of  E, 

the same holds true for X. From (554) it follows that 

7]d~PX = w. 

To see that Eq. (49) holds for an arbitrary 0, take any w E W and analogously to what we 

did above determine 13 = 131 dx +/32 dy, such that (0-J )*w = dfl,/3 E H s (AI(0(E)) ) ,  
and (43)-(45) are satisfied. As in the case 7/=id, we define a vector field ~7 E H s (rl(E), R e) 

such that 

Lyc(dx A dy) = (O-l)*w, 

and therefore 

0*Lk(dx A dy) = w. 

Then, putting X = X o 0, one has 

rffLxo,l-~ (dx A dy) = w. 

Because (X, (0, 1) T) = 0 on Zi,  i = 0, 1,/3 as well as X vanish in the four corners of  E 

and X E H ~ ( E ,  ~2) one has X E ToEmb*(/~) and 

Toq~ x = w. 

This finishes our proof that the configuration space C of  the drop is a differentiable 

manifold. [] 

To define a manifold structure on the configuration space of  a liquid bridge with moving 

contact lines between two infinitely extended plates, the following modifications have to be 

made in the proof above (again considering the two-dimensional case only): 

One drops the assumption of  fixed contact points and considers the subset Emb + (/~) 

of  Emb(/~), consisting of  embeddings that map the contact lines (in the three-dimensional 

case: the contact surfaces) of  the reference configuration with plate Pi into Pi, i = O, 1. 

Just as above one proves that Emb+(/~) is a submanifold of  Emb(/~) and that the set 

of  volume-preserving maps in Emb+(/~) is a submanifoid Emb+ol(/~) of  Emb + (/~). The 
configuration space C,n of  the drop with moving contact lines is then defined as the set of 

+ - 
those maps ~7 E Embvo I (E) that have the following properties: The free boundary FL, of the 

reference configuration is mapped by 0 into the region between the two plates and 0(FE) 
touches plates Pi only in the images of  the contact points of  FE with plate Pi, i = O, 1. 

Furthermore, the contact angles in which o(FE)  meets the two plates are assumed to be 
+ 

different from zero. Then by (25) the set Cm is an open subset of  Embvo I (/~) and therefore a 
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submanifold of Emb+oi (/~). As mentioned in Section 1, motions in which the free boundary 
of the drop hits a plate cannot be described with this model of configuration space for 
a drop with moving contact lines between infinitely extended plates. We note that the 

values of the contact angles in which the free boundary of the drop meets the two plates 

are not specified in the definition of Cm. In [6] the exact values of the contact angles are 
determined by the choice of the Hamiltonian which governs the dynamics of the liquid 

bridge. 

4. Summary of some results on the stability and bifurcation of rigidly rotating 
cylindrical liquid drops 

In this section we will summarize results of Kruse [7] on the stability and bifuration 

of rigidly rotating liquid cylinders with fixed contact lines. Liquid cylinders with height h 

and base radius d rotating with angular velocity o9 represent solutions to the equations of 

motion (9)-(14) for any value ofo9 ~ ~. In the companion paper [7] we use a variant of the 
energy-momentum method of Simo, Lewis, Marsden and their co-workers (for references 

to the literature see Section 1) to study the stability and bifurcation behaviour of these 
solutions with respect to axisymmetric perturbations of the drop shape. As a bifurcation 

parameter we use on the one hand the angular velocity o9 of the rotating drop and on the 
other hand its angular momentum #. The discussion is analogous to the one given in [9], 

were liquid bridges with free contact lines, but fixed contact angles were considered. To be 

more specific, let 

f : [ 0 ,  h ] ~  ~+ 

parameterize the profile curve of an axisymmetric drop with free boundary 27f. Let Vol(f)  

denote the drop volume, V ( f )  = r f z I  dA its potential energy and I ( f )  its moment of 
inertia about the z-axis. A rigidly rotating axisymmetric drop can be characterized as a 
critical point of the functional 

V ( f )  - 1 0921 ( f )  - cVol(f) ,  

for some c ~ R. The functional 

V~o = V ( f )  - ½1(f)  

is called the augmented potential of the drop (see [12]). The drop with profile f : [0, h] ---> 
R + and angular velocity co ~ R is orbitally stable with respect to axisymmetric perturbations 
if the second derivative D2(Voj - cVol)( f ) (3f ,  3g) is definite with respect to variations 
8f, 8g : [0, h] --* R that satisfy the linearized volume constraint 

h h 

f S f  dz = f , g d z  =O. 
o o 



H.-P Kruse /Journal of Geometry and Physics 29 (1999) 260-282 281 

In [7] we show that a cylindrical drop with base radius d and angular velocity o9 about the 

z-axis is stable if 

4rcZdr T 
h 2 > ~ + coZd 2. 

This inequality is violated for o92 > o92, where coo is a solution of 

h 2 * 2 og/]h d 
- -  + - -  - -  1. ( 5 6 )  
47rZd 2 4rTr 2 

At the critical angular velocity w0 a subcritical pitchfork bifurcation occurs in the sense that 
non-cylinderical solutions exist for o) 2 < w 2. There is a second way to characterize rigidly 
rotating axisymmetric drops. Let 

1 # 2  
Vg,(f)  = V ( f )  + - - -  

2 1 ( f )  

denote the amended potential of the drop (compare [12]). Axisymmetric drops with pro- 

file f • [0, h] ~ ~+  rotating rigidly about the z-axis with angular velocity o9 can be 
characterized as critical points of the functional 

V~ - cVol, 

for some c 6 ~. These rigidly rotating drops are orbitally stable with respect to axisymmetric 
perturbations of the drop shape if the second derivative D 2 ( Vi~ - cVol) ( f )  (r f ,  6g) is definite 

for variations ~f, 3g " [0, h] --+ ~+  which satisfy the linearized volume constraint. In [7] it 
is shown that using the amended potential in the stability analysis of rigidly rotating liquid 

cylinders one arrives at the same stability result as in the case of the augmented potential, 

i.e. the liquid cylinder with base radius d is stable of  I~1 < I~0 I, where 

#o = I (d)og0. 

If  one uses the angular momentum /z as a bifurcation parameter instead of the angular 
velocity and characterizes rigidly rotating drops as critical points of  the amended potential 

instead of the augmented potential then a pitchfork bifurcation takes place at the parameter 
value/z = #0. Let a = h 2 / 4 d  2 and 

21-2 j r  2 

rrl = 3--~(147 - ~ ) ,  rr2 = 3-~(147  + ~ ) .  

For cr c (0, a t )  U (or2, ~c) the bifurcation is subcritical. However, if rr • (rrl, rr:), the 
bifurcation is supercritical and solutions on the bifurcating branches are stable (compare 

[ 1 ]). Note that cr is up to a constant factor just the square of the aspect ratio of the drop. 
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